研究方向:人工智能与遥感数据处理包括:开放场景目标识别、神经网络记忆与推理、多模态数据耦合在农业、灾害、图像处理等领域应用。
招生专业:遥感、地信、计算机等相关专业,欢迎联系推免或报考
2016/08-2017/08, 科罗拉多大学波尔得分校,航天科学与工程系,联合培养博士
2013/09-2018/06,北京大学,地球与空间科学学院,地图学与地理信息系统 博士
2018/08-2022/09,北京师范大学,地理科学学部 遥感科学与工程研究院,讲师
2022/09-至今,北京师范大学,地理科学学部 遥感科学与工程研究院,副教授
本科生课程《时空大数据分析》
研究生课程《深度学习与遥感信息智能提取》
本科生课程《城市遥感》
本科生通识课程《时空大数据与社会感知》
国家自然科学基金委面上/青年项目,主持
北京市自然科学基金商业航天联合/青年项目,主持
国家自然科学基金委重大项目《地表异常遥感探测与即时诊断方法》,子课题,负责人
中国博士后科学基金面上/特别资助项目,主持
国家重点研发计划《多灾种综合风险防范服务产品开发与集成平台建设示范》,参与
【# 开放场景目标识别与推理】
S Wen, W Zhao*, et al. Recognizing Unknown Disaster Scenes with Knowledge Graph-based Zero-Shot Learning (KG-ZSL) Model. IEEE Transactions on Geoscience and Remote Sensing, 2024.
F Ji, W Zhao*, et al. Spectral-Spatial Evidential Learning Network for Open-Set Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2024.
【# 神经网络记忆与持续学习】
W Zhao*, R Peng, et al. Life-long learning with continual spectral-spatial feature distillation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2022.
R Peng, W Zhao*, et al. Continual Contrastive Learning for Cross-Dataset Scene Classification, Remote Sensing, 2022, 14(20), 5105.
【# 多源数据耦合与农业监测】
K Li, W Zhao*, et al. Predicting Crop Growth Patterns with Spatial–Temporal Deep Feature Exploration for Early Mapping, Remote Sensing, 2023.
K Li, W Zhao*, et al. Multi-branch self-learning Vision Transformer (MSViT) for Crop type mapping with Optical-SAR time-series. Computers and Electronics in Agriculture, 2022.
W Zhao, Y Qu, et al. Spatial-aware SAR-optical time-series deep integration for crop phenology tracking. Remote Sensing of Environment, 2022, 276, 113046.
W Zhao, Y Qu, et al. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sensing of Environment, 2020, 247, 111952. (code exe工具)
Y Qu, W Zhao*, et al. Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network, Remote Sensing, 2020, 12(15), 2493.
W Zhao, Y Bo, J Chen, et al. Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM). ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 237-250
【# 卫星地表制图与变化检测】
W Zhao, S Peng, et al. Contextual-aware Land Cover Classification with U-shaped Object Graph Neural Network (U-OGNN). IEEE Geoscience and Remote Sensing Letters, 2022.
W Zhao, D Wu, et al. Hyperspectral image classification with multi-scale graph convolution network. International Journal of Remote Sensing, 2021, 42(21), 8380.
X Chen, W Zhao#, et al. Mapping Large-Scale Forest Disturbance Types with Multi-Temporal CNN Framework. Remote Sensing, 2021, 13(24), 5177.
W Zhao, X Chen, et al. Using adversarial network for multiple change detection in bitemporal remote sensing imagery. IEEE Geoscience and Remote Sensing Letters, 2020. (ESI)
W Zhao, X Chen, J Chen, et al. Sample Generation with Self-Attention Generative Adversarial Adaptation Network (SaGAAN) for Hyperspectral Image Classification. Remote Sensing, 2020, 12(5), 843. (ESI, code)
W Zhao, L Mou, J Chen, et al. Incorporating Metric Learning and Adversarial Network for Seasonal Invariant Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(4), 2720 - 2731.
W Zhao, X Chen, Y Bo, et al. Semisupervised Hyperspectral Image Classification With Cluster-Based Conditional Generative Adversarial Net. IEEE Geoscience and Remote Sensing Letters, 2019, 17(3), 539 - 543.
W Zhao, WJ. Emery, Y Bo, J Chen. Land Cover Mapping with Higher Order Graph-Based Co-Occurrence Model. Remote Sensing, 2018, 10(11).
W Zhao, S Du, Q Wang, WJ Emery. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132, 48-60.
W Zhao, S Du, WJ Emery. Object-based convolutional neural network for high-resolution imagery classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7), 3386-3396. (code)
W Zhao, S Du. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (8), 4544-4554 (ESI / HOT paper, code)
W Zhao, S Du. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113, 155-165 (ESI )
W Zhao, S Du. Scene classification using multi-scale deeply described visual words, International Journal of Remote Sensing, 2016, 37 (17), 4119-4131.
W Zhao, Z Guo, J Yue, X Zhang, L Luo. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery, International Journal of Remote Sensing 2015, 36 (13), 3368-3379
J Yue, W Zhao, S Mao, H Liu. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters 2015, 6 (6), 468-477 (ESI )
国产卫星影像全链路高效管理与智能解译处理关键技术及应用,地理信息科技进步奖,一等奖,排名4
第16届中国地理信息科学理论与方法学术年会 青年教师论文竞赛(一等奖)
2020年度北京师范大学优秀辅导员
2020年地理学部第二届青教赛一等奖
专利:
一种顾及物候特征的遥感耕地变化检测方法及系统,发明专利,ZL 2020 1 0608516.X
基于多源时序遥感深度协同下的耕地动态监测方法及系统,发明专利,ZL 2020 1 0639166.3
指导学生:
屈炀(客座),发表SCI论文5篇,核心期刊论文1篇。
陈曦(客座),发表SCI论文5篇,核心期刊论文1篇。
季风呈,研究方向:开放场景分类不确定性度量;发表SCI论文2篇
彭瑞,研究方向:持续学习与网络记忆;发表SCI论文3篇,核心期刊论文1篇
李凯源,研究方向:遥感时序智能分析;发表SCI论文2篇
温思远,研究方向:零样本推理与作物分类;发表SCI论文1篇